Röntgendetektormodul mit Datennahmesystem

 

Ein Röntgendetektorsystem ist ein Instrument zum Nachweis einzelner Röntgenquanten und zur Bestimmung ihrer Energie. Hohe Zählraten verkürzen die Messzeiten deutlich. Ein kleiner Formfaktor und modularer Aufbau bietet dem Anwender eine hohe Flexibilität. Ein kompaktes, umfassendes Datennahmesystem und ein Spülkopf mit Temperatur-, Feuchte- und Drucksensor gewährleisten eine hohe Nutzerfreundlichkeit und Betriebszuverlässigkeit. Die Entwicklung eröffnet ein breites Anwendungsspektrum in der Analyse mit Röntgenstrahlung.

 

Problemstellung

Die Fluoreszenzlichtanalyse in der Röntgenabsorptionsspektroskopie ist ein sehr häufig an Synchrotronquellen angewendetes Verfahren, das leistungsfähige Detektoren benötigt, deren Ausgestaltung einen weiteren, anwenderspezifischen Ausbau schnell und kostengünstig ermöglicht.
Gegenstand der Entwicklung ist ein für den Energiebereich zwischen ca. 2 keV und 17 keV optimiertes, kompaktes Silizium-Driftdetektorsystem mit einer 50 mm² großen aktiven Fläche. Gekühlt oder bei Raumtemperatur wird eine Energieauflösung von wenigen 100 eV bei MHz-Zählraten und spektralen Signal-zu-Untergrund-Verhältnissen oberhalb von 1000 erreicht.

Innovation

Ein monolithischer 7-zelliger Sensor und ein Auslesechip bilden das Herzstück des Sensorkopfes. Im Sensor absorbierte Photonen werden in elektrische Impulse umgewandelt. Eine Maske auf der Eintrittsseite deckt ineffiziente Sensorbereiche ab und verbessert deutlich das spektrale Signal-zu-Untergrund-Verhältnis. Im Auslesechip erfolgt die Detektion der Impulse und ihre Verarbeitung zu einem Ausgangssignal, dessen Amplitude direkt proportional zur Energie des absorbierten Photons ist. Das kompakte, stiftartige Gehäuse mit Peltierkühlung, hexagonaler Außenform und Kabelanbindung gestattet geringste Probenabstände, bietet eine hohe Flexibilität hinsichtlich seiner Implementierung im Experiment und gestattet auch flächige oder gekrümmte Anordnungen meh-rerer Module auf engstem Raum.

Vorteile

Für kleine Zählraten und 8 keV sind FWHM-Linienbreiten von 223 eV bei 10°C und 297 eV bei 24°C erzielbar. Bei 24°C und großen Zählraten steigt diese auf 400 eV für 1,1 Millionen Einträge pro Sekunde und 600 eV für 3,3 Millionen Einträge pro Sekunde. Es sind Element-spezifische Analysen für Verdünnungsgrade unterhalb 100 ppm möglich. Das System arbeitet autark und benötigt keine weiteren Baugruppen.

Entwicklungsstand

Die Entwicklung und Herstellung ist abgeschlos-sen. Eine Kleinserie befindet sich im Einsatz am HASYLAB. Weitere Informationen können

  • NIM A 589 (2008) 25
  • IEEE TNS 56 (2009) 1666-1670
  • J. Synchrotron Radiation 16 (2009) 293–298

entnommen werden,